任兴伟,副教授,博士生导师,“地大学者”青年拔尖人才。普林斯顿大学、佐治亚理工学院、阿卜杜拉国王科技大学访问学者。主要从事环境岩土、能源岩土的基础理论和应用方面的研究,研究方向集中在复杂环境条件下的散体多孔介质渗流及其生态环境效应。先后主持国家自然科学基金、湖北省自然科学基金、中央高校基本科研业务专项、教育部工程研究中心开放基金、企业科技攻关项目等20余项,作为骨干成员参与973项目、国家重点研发计划等。以第一作者或通讯作者发表SCI论文40余篇,授权发明专利及软件著作版权10余项,荣获教育部科技进步二等奖一项。
一、基本信息
姓名:任兴伟
性别:男
籍贯:山东沂水
出生年月:1985年8月
学历:博士
职称:副教授、博士生导师(地质工程、土木工程)
邮箱:xingweiren@cug.edu.cn
二、 学习工作经历
学习经历:
[1] 2004.09-2008.06,源自英国始于1946(武汉),工程地质,学士;
[2] 2008.09-2014.12,同济大学,地质工程,工学博士;
[3] 2011.10-2012.10, 美国佐治亚理工学院, 土木工程, 联合培养。
工作经历:
[1] 2015.01-2018.01,源自英国始于1946(武汉),伟德bv1946官网,讲师;
[2]2018.01-至今,源自英国始于1946(武汉),伟德bv1946官网,副教授;
[3] 2016.01-2016.02,阿卜杜拉国王科技大学(KAUST),地球科学系,访问学者;
[4] 2016.11-2017.11,美国普林斯顿大学(Princeton University),土木与环境工程,访问学者。
三、研究方向
[1]饱和-非饱和多孔介质渗透特性及其工程环境效应
[2]城市绿地土壤渗透性改良机理
[3]软土工程性质及其致灾防灾
[4]海绵城市与城市内涝
四、招生方向
硕士/博士招生专业:地质工程,土木工程,环境工程,水利水资源;
对考生的具体要求:品行端正,脚踏实地,做事靠谱,数学、力学、编程、英语好者优先。
五、主要科研项目
[1]基于多尺度关联特征的城市绿地土壤渗透特性改良机理研究,国家自然科学基金面上项目,2024-2027,主持;
[2]考虑荷载波形效应的高速铁路地基软黏土长期累积变形机理研究,国家自然科学基金青年项目,2018-2020,主持;
[3]振动荷载作用下武汉软黏土加速蠕变特性和变形机理研究,湖北省自然科学基金项目,2018-2019,主持;
[4]福州市红庙岭垃圾填埋场及危废处置场地下水环境状况调查评估项目技术咨询服务,企业科技攻关项目,2023-2025,主持;
[5]郑州市西部新城区地下空间开发条件调查项目(D包)技术服务,企业科技攻关项目,2022-2024,主持;
[6]郑州市主城区地下空间开发条件调查(C包)技术服务,企业科技攻关项目,2022-2024,主持;
[7]郑州市地下空间开发地质环境效应研究项目技术服务,企业科技攻关项目,2023-2024,主持;
[8]2022年鄂安沧管道地质灾害调查与整治规划项目,企业科技攻关项目,2022-2022,主持;
[9]孝感站K1605傅家包隧道管道穿越水渠处整治项目建设工程设计,企业科技攻关项目,2022-2022,主持;
[10]安庆勘察项目综合地质测绘与水文地质专项调查技术服务,企业科技攻关项目,2020-2021,主持;
[11]西气东输管道第三方交叉施工保护工程监测,企业科技攻关项目,2020-2021,主持;
[12]武汉深厚软土深基坑单支点-高净空排桩支护体系关键技术研究,企业科技攻关项目,2020-2022,主持;
[13]武汉临江水文地质关键参数研究及工程应用,企业科技攻关项目,2020-2021,主持;
[14]复杂地质条件下暗挖隧道近距离下穿既有地铁和河道关键技术研究,企业科技攻关项目,2019-2020,主持;
[15]新型跨座式单轨路基工程关键技术研究,企业科技攻关项目,2018-2020,主持;
[16]柳州市轨道交通1、2线地质灾害危险性评估,企业科技攻关项目,2017-2018,主持;
[17]柳州市城市轨道交通建设规划地质灾害危险性评估,企业科技攻关项目,2016-2016,主持;
[18]绿松石矿区地质灾害风险及管控研究——以竹山县小河村为例,中央高校基本科研业务专项,2016-2018,主持。
[19]田桓铁路工程大前石岭岩堆性质及处置技术研究,企业科技攻关项目,2016-2016,骨干成员(排名3);
[20]宜巴高速超高填方路基反压治理大型滑坡的施工技术研究”, 企业科技攻关项目,2015-2016,骨干成员(排名2);
[21]重大工程灾变滑坡区地质过程及孕灾模式, 国家重点基础研究项目课题(973计划),2011-2015,骨干成员(排名3)。
六、 代表性成果(文章、专著、专利等)
学术论文:
[1] Guo, Z., Chen, X., Wang, B., Ren, X.*, 2023. Two-phase relative permeability of hydrate-bearing sediments: A theoretical model. Energy, 275, 127441.
[2]Chen, X., Li, L., Li, X., Kang, J., Xiang, X., Shi, H., Ren, X.*, 2023.Effect of biochar on soil-water characteristics of soils: A pore-scale study. Water, 15(10):1909.
[3] Khan, J., Ren, X.*, Hussain, M.A., Jan, M.Q., 2022. Monitoring land subsidence using PS-InSAR technique in Rawalpindi and islamabad, Pakistan. Remote Sensing 14 (15), 3722.
[4] Fang, Q., Ren, X.*, Zhang, B., Chen, X., Guo, Z., 2022. A flexible soil-water characteristic curve model considering physical constraints of parameters. Engineering Geology, 305, 106717.
[5] Guo, Z., Fang, Q., Nong, M., Ren, X.*, 2021. A novel Kozeny-Carman-based permeability model for hydrate-bearing sediments. Energy, 234, 121203.
[6] Guo, Z., Fang, Q., Ren, X.*, 2021. Numerical Study on seepage characteristics of hydrate-bearing sediments: A pore-Scale perspective. IOP Conference Series: Earth and Environmental Science 861 (7), 072014.
[7] Liu, Y., Wang, H., Wu, Y., Zhao, Y., Ren, X.*, 2021. Aquifer response to stream-stage fluctuations: field tests and analytical solution for a case study of the Yangtze River in Wuhan, China. Water 13 (17), 2388.
[8] Xiong, H., Sun, Y., Ren, X.*, 2020. Comprehensive assessment of water sensitive urban design practices based on multi-criteria decision analysis via a case study of the University of Melbourne, Australia. Water 12 (10), 2885.
[9] Ren, X.*, Guo, Z., Ning, F., Ma, S., 2020. Permeability of hydrate-bearing sediments. Earth-Science Reviews, 202, 103100.
[10] Liu, Y., Xu, C., Huang, B., Ren, X.*, Liu, C., Hu, B., Chen, Z., 2020. Landslide displacement prediction based on multi-source data fusion and sensitivity states. Engineering Geology, 271, 105608.
[11] Ren, X.*, Hong, N., Li, L., Kang, J., Li, J., 2020. Effect of infiltration rate changes in urban soils on stormwater runoff process. Geoderma, 363, 114158.
[12] Ren, X., Kang, J., Ren, J., Chen, X., Zhang, M., 2020. A method for estimating soil water characteristic curve with limited experimental data. Geoderma, 360,114013.
[13] Deng, Q., Fu, M., Ren, X*., 2020. Does pipelaying method affect the development of pipeline geohazards and maintenance cost? A case study of Zhongxian-Wuhan gas pipeline, China. Bulletin of Engineering Geology and the Environment 79 (1), 97-107.
[14] Zhang, M., Yang, L., Ren, X*., Zhang, C., Zhang, T., Zhang, J., Shi, X., 2019. Field model experiments to determine mechanisms of rainstorm-induced shallow landslides in the Feiyunjiang River basin, China. Engineering Geology, 262, 105348.
[15] Lu, Z., Yao, A., Su, A., Ren, X., Liu, Q., Dong, S., 2019. Re-recognizing the impact of particle shape on physical and mechanical properties of sandy soils: A numerical study. Engineering Geology, 253, 36-46.
[16] Ren., X., Wu, J., Tang, Y., Yang, J., 2019. Propagation and attenuation characteristics of the vibration in soft soil foundations induced by high-speed trains. Soil Dynamics and Earthquake Engineering 117, 374-383.
[17] Tang, Y., Yang, Q., Ren, X.*, Xiao, S., 2019. Dynamic response of soft soils in high-speed rail foundation: in situ measurements and time domain finite element method model. Canadian Geotechnical Journal 56 (12), 1832-1848.
[18] Ren, X., Xu, Q., Teng, J., Zhao, N., Lv,L.,2018. A novel model for the cumulative plastic strain of soft marine clay under long-term low cyclic loads. Ocean Engineering, 149, 194-204.
[19] Ren, X., Xu, Q., Xu C., Teng, J., Lv,S., 2018. Undrained pore pressure behavior of soft marine clay under long-term low cyclic loads. Ocean Engineering, 150, 60-68.
[20] Ren, X., Santamarina,J.C., 2018. The Hydraulic Conductivity of Sediments: A pore size perspective. Engineering Geology, 233, 48-54.
[21] Deng,Q., Fu, M., Ren, X., Liu, F., Tang, H., 2017. Precedent long-term gravitational deformation of large scale landslides in the Three Gorges reservoir area, China. Engineering Geology, 21:170-183.
[22] Deng, Q., Ren,X*., 2017. An energy method for deformation behavior of soft clay under cyclic loads based on dynamic response analysis. Soil Dynamics and Earthquake Engineering, 94: 75-82.
[23] Ren,X., Zhao, Y., Deng, Q., Kang, J., Li, D., Wang, D., 2016. A relation of hydraulic conductivity-void ratio for soils based on Kozeny-Carman equation. Engineering Geology, 213:89-97.
[24] Ren, X., Tang, Y., Li, J., Yang, Q., 2012.A prediction method using grey model for cumulative plastic deformation under cyclic loads.Natural Hazards, 64(1): 441-457.
[25] Tang, Y., Ren, X.*, Chen, B., Song, S., Wang, J., Yang, P., 2012.Study on Land Subsidence under Different Plot Ratio through Centrifuge Model Test in Soft-Soil Territory. Environmental Earth Sciences, 66 (7): 1809-1816.
[26] Yan,C., Tang, Y., Wang,Y., Ren, X., 2012. Accumulated deformation characteristics of silty soil under the subway loading in Shanghai. Natural Hazards, 62:375-384.
[27] Ren,X., Tang,Y., Xu,Y., Wang, Y., Zhang, X., Liu, S., 2011. Study on dynamic response of saturated soft clay under the subway vibration loading I: instantaneous dynamic response.Environmental Earth Sciences, 64(7): 1875-1883.
[28] 任兴伟,冯晓腊. 土木工程专业地基处理课程教学模式改革探讨.科教文汇,2017,406:51-52,58.
[29] 任兴伟,唐益群,代云霞,方瑜. 滑坡初始涌浪高度计算方法的改进及其应用,水利学报,2009, Vol.40 (9):1116-1119.
发明专利:
[1] 一种天然气水合物渗透率测定装置,任兴伟,郭泽玉,马淑芝,宁伏龙,邓清禄. ZL201810949147.3, 2022-11-04;
[2] 一种变水头土壤渗透系数测定装置,任兴伟,陈轩翌,周雅婷,王文正,韩啸,邸同宇. ZL201910145629.8, 2022-11-04;
[3] 一种变水头土壤渗透系数测定装置,任兴伟,陈轩翌,周雅婷,王文正,韩啸,邸同宇. ZL201910145629.8, 2022-09-30;
[4] 一种由工程环境效应引起地面沉降的模型及其试验方法,唐益群,任兴伟,周洁,李珺,王建秀,杨坪,ZL201110054057.6,2013-06-05
[5] 地源热泵岩土热响应测试室内模型试验装置及其应用,唐益群,周洁,刘宇亭,任兴伟,王建秀,杨坪,ZL201110350536.2,2015-04-08
[6] 人工地层冻结法对周围环境效应的模型试验装置及方法,周洁,唐益群,李珺,刘宇亭,任兴伟,杨奇,ZL201310153365.3,2015-08-19
专著:
[1] 唐益群,周念清,周洁,任兴伟,张曦.地铁行车荷载作用下饱和软粘土的动力响应与变形特征研究。北京:科学出版社,2011.9.
[2] Yiqun Tang, Jie Zhou, Xingwei Ren, Qi Yang. Dynamic Response and Deformation Characteristic of Saturated Soft Clay under Subway Vehicle Loading. Springer, 2014.
七、 获奖情况
[1] 2014年1月, 教育部自然科学奖二等奖(排名第7)
八、 其他—学术兼职与学术交流
美国环境与工程地质协会会员,中国工程地质学会会